Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.091
1.
Am J Cancer Res ; 14(4): 1768-1783, 2024.
Article En | MEDLINE | ID: mdl-38726285

Genetic and epigenetic aberrations display an essential role in the initiation and progression of diffuse large B-cell lymphoma (DLBCL). 5-methylcytosine (m5C), a common RNA modification, regulates various cellular processes and contributes to tumorigenesis and cancer progression. However, m5C alterations in DLBCL remain unclear. Our research constructed an m5C prognostic model utilizing GEO data sets, which can efficiently predict the prognosis of patients with DLBCL, and verified the m5C prognostic model genes by immunohistochemistry analysis. This model was constructed using unsupervised consensus clustering analyses, Least Absolute Shrinkage and Selection Operator (LASSO), and multivariate Cox regression analyses. Based on the expression of m5C genes in the model, patients with DLBCL could be effectively divided into groups with significant survival time differences. The m5C risk-score signature demonstrated a highly significant independent prognostic value. Results from tumor microenvironment analyses revealed that m5C genes altered the infiltration of eosinophils, Tregs, and M2 macrophages. Additionally, they regulated T cell activation by modulating the expression of CTLA4, PDL1, B2M, CD8A, ICOS, and other relevant immune checkpoint expressions. In conclusion, our study presents a robust m5C prognostic model that effectively predicts prognosis in DLBCL. This model may offer a new approach for prognostic stratification and potential therapeutic interventions for patients with DLBCL.

2.
Phytomedicine ; 129: 155662, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38728917

BACKGROUND: Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE: This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS: Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS: Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION: This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.

3.
Article En | MEDLINE | ID: mdl-38743538

Learning an autonomous dynamic system (ADS) encoding human motion rules has been shown as an effective way for human motion skills transfer. However, most existing approaches focus on goal-directed motion skills transfer, and the study on periodic motion skills transfer is rare. One popular approach for periodic motion skills transfer is learning periodic dynamic movement primitive (DMP); however, periodic DMP is sensitive to spatial disturbances due to the introduction of the phase parameters. To solve this issue, this brief presents a novel approach to learn an ADS with a stable limit cycle without introducing phase parameters. First, a data-driven Lyapunov function (energy function) is learned, such that one of its level surfaces is consistent with periodic human demonstration trajectories. Then, an ADS is learned by sequentially solving energy function-related constrained optimization problems. With a proper design of constraint functions, we can ensure that the trajectory generated by the ADS will converge to an energy function-level surface, of which the shape is similar to periodic human demonstration trajectories. Experiments are conducted to show the effectiveness of the proposed approach (PA).

4.
Front Oncol ; 14: 1341068, 2024.
Article En | MEDLINE | ID: mdl-38715781

Gastric-type endocervical adenocarcinoma (G-EAC) represents a rare variant of cervical mucinous adenocarcinoma that is typically unrelated to human papillomavirus (HPV) infection. G-EAC exhibits highly atypical clinical presentations and characteristics, and aggressive biological behavior often leads to challenges in timely diagnosis. Here, we present a case study involving a 74-year-old Chinese woman who experienced urinary incontinence for one month. Biopsy pathology confirmed the diagnosis of G-EAC, revealing stage IVa by imaging examinations. The patient subsequently underwent three cycles of chemotherapy, followed by adjuvant radiotherapy and surgical excision of residual tumor foci. This comprehensive treatment approach yielded a favorable survival outcome. For patients with advanced G-EAC, a multimodal therapeutic approach holds promise and warrants further exploration.

5.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article En | MEDLINE | ID: mdl-38717599

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710515

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
7.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38727159

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Glucosides , Lung Injury , Mice, Inbred C57BL , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phenols , Sirtuin 1 , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Sirtuin 1/metabolism , Sirtuin 1/genetics , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice , Lung Injury/drug therapy , Particulate Matter/toxicity , Particulate Matter/adverse effects , Particle Size , Lung/drug effects , Lung/pathology , Lung/metabolism
8.
Biomed Pharmacother ; 175: 116660, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701563

Pancreatic ductal adenocarcinoma (PDAC) has an extremely devastating nature with poor prognosis and increasing incidence, making it a formidable challenge in the global fight against cancer-related mortality. In this innovative preclinical investigation, the VCP/p97 inhibitor CB-5083 (CB), miR-142, a PD-L1 inhibitor, and immunoadjuvant resiquimod (R848; R) were synergistically encapsulated in solid lipid nanoparticles (SLNs). These SLNs demonstrated features of peptides targeting PD-L1, EGFR, and the endoplasmic reticulum, enclosed in a pH-responsive polyglutamic (PGA)-polyethylene glycol (PEG) shell. The homogeneous size and zeta potential of the nanoparticles were stable for 28 days at 4°C. The study substantiated the concurrent modulation of key pathways by the CB, miR, and R-loaded nanoformulation, prominently affecting VCP/Bip/ATF6, PD-L1/TGF-ß/IL-4, -8, -10, and TNF-α/IFN-γ/IL-1, -12/GM-CSF/CCL4 pathways. This adaptable nanoformulation induced durable antitumor immune responses and inhibited Panc-02 tumor growth by enhancing T cell infiltration, dendritic cell maturation, and suppressing Tregs and TAMs in mice bearing Panc-02 tumors. Furthermore, tissue distribution studies, biochemical assays, and histological examinations highlighted enhanced safety with PGA and peptide-modified nanoformulations for CB, miR, and/or R in Panc-02-bearing mice. This versatile nanoformulation allows tailored adjustment of the tumor microenvironment, thereby optimizing the localized delivery of combined therapy. These compelling findings advocate the potential development of a pH-sensitive, three-in-one PGA-PEG nanoformulation that combines a VCP inhibitor, a PD-L1 inhibitor, and an immunoadjuvant for cancer treatment via combinatorial chemo-immunotherapy.

9.
Phytomedicine ; 129: 155647, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38703660

BACKGROUND: Oxaliplatin is the most common chemotherapeutic agent for patients with colorectal cancer. However, its anti-cancer efficacy is restricted by drug resistance occurring through several mechanisms, including autophagy. Liensinine exerts a considerable anti-tumor effect and can regulate autophagy. Inhibition of autophagy is a strategy to reverse resistance to oxaliplatin. The aim of this study was to check if liensinine can enhance the therapeutic efficacy of oxaliplatin in colorectal cancer and if so, elucidate its mechanism. METHODS: Two colorectal cancer cell lines, HCT116 and LoVo, and one normal intestinal epithelial cell, NCM-460 were used for in vitro experiments. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the cytotoxicity of liensinine and oxaliplatin. Network pharmacology analysis and Human XL Oncology Array were used to screen targets of liensinine. Transfections and autophagy regulators were used to confirm these targets. The relationship between the target and clinical effect of oxaliplatin was analyzed. Patient-derived xenograft (PDX) models were used to validate the effects of liensinine and oxaliplatin. RESULTS: CCK-8 and colony formation assays both showed that the combination treatment of liensinine and oxaliplatin exerted synergistic effects. Results of the network pharmacology analysis and Human XL Oncology Array suggested that liensinine can inhibit autophagy by targeting HIF-1α/eNOS. HIF-1α was identified as the key factor modulated by liensinine in autophagy and induces resistance to oxaliplatin. HIF-1α levels in tumor cells and prognosis for FOLFOX were negatively correlated in clinical data. The results from three PDX models with different HIF-1α levels showed their association with intrinsic and acquired resistance to oxaliplatin in these models, which could be reversed by liensinine. CONCLUSIONS: Research on the relationship between HIF-1α levels and the clinical effect of oxaliplatin is lacking, and whether liensinine regulates HIF-1α is unknown. Our findings suggest that liensinine overcomes the resistance of colorectal cancer cells to oxaliplatin by suppressing HIF-1α levels to inhibit autophagy. Our findings can contribute to improving prognosis following colorectal cancer therapy.

10.
Future Oncol ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38695479

Treatment options for patients with advanced or metastatic esophageal squamous cell carcinoma (ESCC) are improving. Current guidelines recommend first-line pembrolizumab plus chemotherapy for patients with unresectable or metastatic ESCC, which has led to improvements in survival outcomes. Antiangiogenic therapy combined with immune checkpoint inhibitors can act synergistically to convert the immunosuppressive tumor microenvironment to an immune supportive microenvironment, thus enhancing antitumor immune responses. In preclinical models, the antiangiogenic agent lenvatinib combined with an anti-PD-1 agent showed synergistic antitumor activity. We describe the design and rationale for the randomized, open-label, phase III LEAP-014 study of lenvatinib in combination with pembrolizumab plus chemotherapy in patients with advanced or metastatic ESCC. Overall survival and progression-free survival are the dual primary end points. Clinical Trial Registration: NCT04949256 (ClinicalTrials.gov).

11.
Plant Physiol ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38696768

Nondestructive plant phenotyping forms a key technique for unraveling molecular processes underlying plant development and response to the environment. While the emergence of high-throughput phenotyping facilities can further our understanding of plant development and stress responses, their high costs greatly hinder scientific progress. To democratize high-throughput plant phenotyping, we developed sets of low-cost image- and weight-based devices to monitor plant shoot growth and evapotranspiration. We paired these devices to a suite of computational pipelines for integrated and straightforward data analysis. The developed tools were validated for their suitability for large genetic screens by evaluating a cowpea (Vigna unguiculata) diversity panel for responses to drought stress. The observed natural variation was used as an input for a genome-wide association study, from which we identified nine genetic loci that might contribute to cowpea drought resilience during early vegetative development. The homologs of the candidate genes were identified in Arabidopsis (Arabidopsis thaliana) and subsequently evaluated for their involvement in drought stress by using available T-DNA insertion mutant lines. These results demonstrate the varied applicability of this low-cost phenotyping system. In the future, we foresee these setups facilitating the identification of genetic components of growth, plant architecture, and stress tolerance across a wide variety of plant species.

12.
J Hazard Mater ; 471: 134464, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38688219

Developing highly efficient adsorbents for the removal of trace thallium(I) (Tl+) is crucial for addressing environmental challenges. In this study, we successfully synthesized cubic Prussian blue (PB) loading on filter papers using an intermediate layer (dopamine/polyethyleneimine) via in-situ methods. The as-prepared PB-modified FP demonstrated outstanding anti-interference properties and light-enhanced adsorption performance for Tl+ (0.5 mg/L) under ultraviolet (UV) irradiation, exhibiting twice the effectiveness compared to dark conditions, even in acidic and coexisting ionic environments. This indicated its suitability for treating complex Tl+-contaminated water. Notably, the removal efficiency for trace Tl+ was almost 100%, with a maximum experimental adsorption capacity of 86.2 mg/g after 1-h photo-promoted adsorption under 365 nm UV. Characterization results supported a proposed photo-driven redox mechanism that elucidated the interaction between Tl+ and PB-modified FP. Specifically, the accelerated Fe(III) to Fe(II) redox reaction facilitated Tl+ accommodation on the surface and/or lattice of PB, enhancing Tl+ adsorption by compensating for missed positive charges. This study provides valuable insights into utilizing PB-based materials to enhance the photo-enhanced Tl+ adsorption capacity in a cost-effective, easy-to-synthesize, and environmentally friendly manner.

13.
Zygote ; 32(2): 170-174, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619002

Oocytes with excessively large first polar bodies (PB1) often occur in assisted reproductive procedures. Many times these oocytes are discarded without insemination and, as a result, the application of this portion of oocytes has scarcely been reported to date. Few studies have examined large PB1 oocytes in infertile women and have virtually entirely studied genetic variations for large PB1 oocyte abnormalities. Here, we describe an unusual case of a live birth from a remarkably large PB1 oocyte in a frozen embryo transfer (FET) cycle. This is the first instance of a successful live birth resulting from a PB1 oocyte with an extremely large polar body measuring 80 µM × 40 µM in size. The large PB1 oocyte was performed by an early rescue intracytoplasmic sperm injection (r-ICSI) and was formed into a blastocyst on day 5. Following FET, a healthy boy baby weighing 3100 g was finally delivered by caesarean section at 37 weeks and 5 days after conception. Additionally, there were no complications throughout the antenatal period or the perinatal phase of this following full-term delivery. In this study, it is revealed for the first time that a huge PB1 oocyte can be fertilized, resulting in the growth of a blastocyst, a subsequent pregnancy, and a live birth. This new information prompts us to reconsider the use of large PB1 oocytes. More insightful talks should be given attention to prevent the waste of embryos because not all oocytes with aberrant morphology are unavailable.


Embryo Transfer , Live Birth , Oocytes , Polar Bodies , Sperm Injections, Intracytoplasmic , Humans , Female , Pregnancy , Sperm Injections, Intracytoplasmic/methods , Adult , Oocytes/physiology , Oocytes/cytology , Male , Embryo Transfer/methods , Infant, Newborn , Blastocyst/cytology , Blastocyst/physiology , Cryopreservation
14.
Article En | MEDLINE | ID: mdl-38656738

OBJECTIVE: Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS: We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS: We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION: These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.

15.
Diseases ; 12(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38667525

The circulating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variant presents an ongoing challenge for surveillance and detection. It is important to establish an assay for SARS-CoV-2 antibodies in vaccinated individuals. Numerous studies have demonstrated that binding antibodies (such as S-IgG and N-IgG) and neutralizing antibodies (Nabs) can be detected in vaccinated individuals. However, it is still unclear how to evaluate the consistency and correlation between binding antibodies and Nabs induced by inactivated SARS-CoV-2 vaccines. In this study, serum samples from humans, rhesus macaques, and hamsters immunized with inactivated SARS-CoV-2 vaccines were analyzed for S-IgG, N-IgG, and Nabs. The results showed that the titer and seroconversion rate of S-IgG were significantly higher than those of N-IgG. The correlation between S-IgG and Nabs was higher compared to that of N-IgG. Based on this analysis, we further investigated the titer thresholds of S-IgG and N-IgG in predicting the seroconversion of Nabs. According to the threshold, we can quickly determine the positive and negative effects of the SARS-CoV-2 variant neutralizing antibody in individuals. These findings suggest that the S-IgG antibody is a better supplement to and confirmation of SARS-CoV-2 vaccine immunization.

16.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38668199

Manipulating plasmonic chirality has shown promising applications in nanophotonics, stereochemistry, chirality sensing, and biomedicine. However, to reconfigure plasmonic chirality, the strategy of constructing chiral plasmonic systems with a tunable morphology is cumbersome and complicated to apply for integrated devices. Here, we present a simple and effective method that can also manipulate chirality and control chiral light-matter interactions only via strong coupling between chiral plasmonic nanoparticles and excitons. This paper presents a chiral plexcitonic system consisting of L-shaped nanorod dimers and achiral molecule excitons. The circular dichroism (CD) spectra in our strong-coupling system can be calculated by finite element method simulations. We found that the formation of the chiral plexcitons can significantly modulate the CD spectra, including the appearance of new hybridized peaks, double Rabi splitting, and bisignate anti-crossing behaviors. This phenomenon can be explained by our extended coupled-mode theory. Moreover, we explored the applications of this method in enantiomer ratio sensing by using the properties of the CD spectra. We found a strong linear dependence of the CD spectra on the enantiomer ratio. Our work provides a facile and efficient method to modulate the chirality of nanosystems, deepens our understanding of chiral plexcitons in nanosystems, and facilitates the development of chiral devices and chiral sensing.

17.
Cancer Med ; 13(7): e7132, 2024 Apr.
Article En | MEDLINE | ID: mdl-38606892

BACKGROUND: Fertility-sparing surgery (FSS) is an alternative choice of young patients who have not completed their family planning and still have fertility needs. The aims of this study were to compare the outcomes of early-stage epithelial ovarian cancer (EOC) patients undergoing FSS and radical comprehensive staging surgery (RCS), and the suitability of FSS. METHODS: A total of 1297 patients aged between 20 and 44 years with newly diagnosed early-stage EOC were recruited from the Taiwan Cancer Registry database between 2009 and 2017. Site-specific surgery codes were used to distinguish patients in FSS group or RCS group. Cancer-specific survival (CSS) was evaluated using Kaplan-Meier method with log-rank test and Cox regression model. RESULTS: There were 401 and 896 patients in FSS and RCS group. Patients in FSS group were with younger age and mostly had Stage I disease. In contrast, patients in RCS group were older. There were more Stage II, high-grade (Grade 3) disease, and adjuvant chemotherapy in RCS group. Stage and tumor grade were two independent factors correlating with CSS and the type of surgery showed no effect on CSS (HR: 1.09, 95% CI: 0.66-1.77, p = 0.73) in multivariable analysis. In multivariable analysis, the clear cell carcinoma group who underwent FSS demonstrated better CSS compared to those in the RCS group (HR: 0.28, 95% CI: 0.06-0.82, p = 0.04). A total of 17 women who underwent FSS developed second malignancies of the uterine corpus or contralateral ovary. CONCLUSION: FSS can be a safe alternative procedure in selected young patients of Stage I EOC who have fertility desire. Endometrial biopsy before or during FSS and regular surveillance to detect recurrence are mandatory for ovarian cancer patients undergoing FSS.


Fertility Preservation , Ovarian Neoplasms , Humans , Female , Young Adult , Adult , Retrospective Studies , Carcinoma, Ovarian Epithelial/surgery , Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/surgery , Ovarian Neoplasms/drug therapy , Neoplasm Staging
18.
Respir Res ; 25(1): 169, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637797

BACKGROUND AND OBJECTIVE: To explore the efficacy of deep diaphragmatic breathing training (DEP) in patients with gastroesophageal reflux-induced chronic cough (GERC). METHODS: A randomized controlled study was conducted involving 60 GERC patients who were divided into the intervention group and the control group (each with 30 patients). Both groups received routine medication treatment for GERC, while the intervention group received DEP training additionally. Both groups were evaluated by cough symptom scores, Hull airway reflux questionnaire (HARQ), gastroesophageal reflux diagnostic questionnaire (GerdQ), generalized anxiety disorder scale-7 (GAD-7), patient health questionnaire-9 (PHQ-9), Pittsburgh sleep quality index (PSQI), the Leicester cough questionnaire (LCQ), as well as capsaicin cough sensitivity testing, B-ultrasound and surface electromyography (sEMG) of the diaphragmatic muscles before and after treatment. The cough resolution rate and changes of the above indictors was compared between the two groups after eight weeks of treatment. RESULTS: After eight weeks of treatment, cough symptoms improved in both groups, but the cough resolution rate in the intervention group of 94% was significantly higher than that in the control group of 77% (χ2 = 6.402, P = 0.041). The intervention group showed significant improvements to the control group in GerdQ (6.13(0.35) VS 6.57(0.77)), GAD-7 (0(0;1) VS 1(0;3)), PSQI (2(1;3) VS 4(3;6)), LCQ (17.19(1.56) VS 15.88(1.92)) and PHQ-9 (0(0;0) VS 0(0;3)) after treatment. Compared to control group, sEMG activity of the diaphragmatic muscle was significantly increased in the intervention group after treatment, measured during DEP (79.00(2.49) VS 74.65 (1.93)) and quiet breathing (72.73 (1.96) VS 67.15 (2.48)). CONCLUSION: DEP training can improve cough symptoms as an adjunctive treatment in GERC patients. TRIAL REGISTRATION: The protocol was registered in February 2, 2022 via the Chinese Clinical Trials Register ( http://www.chictr.org.cn/ ) [ChiCTR2200056246].


Chronic Cough , Gastroesophageal Reflux , Humans , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/diagnosis , Gastroesophageal Reflux/therapy , Cough/diagnosis , Cough/etiology , Cough/therapy , Surveys and Questionnaires , Research Design
19.
BMC Infect Dis ; 24(1): 412, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641583

BACKGROUND: Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS: During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS: Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION: This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.


Gastroenteritis , Vibrio , Humans , Aged , Virulence/genetics , Phylogeny , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Diarrhea/microbiology , Imipenem/pharmacology
20.
Work ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38669522

BACKGROUND: The progression and persistence of myocardial ischemia/reperfusion injury (MI/RI) are strongly linked to local inflammatory responses and oxidative stress. Cyclophilin A (CypA), a pro-inflammatory factor, is involved in various cardiovascular diseases. However, the role and mechanism of action of CypA in MI/RI are still not fully understood. METHODS: We used the Gene Expression Omnibus (GEO) database for bioinformatic analysis. We collected blood samples from patients and controls for detecting the levels of serum CypA using enzyme-linked immunosorbent assay (ELISA) kits. We then developed a myocardial ischemia/reperfusion (I/R) injury model in wild-type (WT) mice and Ppia-/- mice. We utilized echocardiography, hemodynamic measurements, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining to determine the role of CypA in myocardial I/R injury. Finally, we conducted an in vitrostudy, cell transfection, flow cytometry, RNA interference, and a co-immunoprecipitation assay to clarify the mechanism of CypA in aggravating cardiomyocyte apoptosis. RESULTS: We found that CypA inhibited TXNIP degradation to enhance oxidative stress-induced cardiomyocyte apoptosis during MI/RI. By comparing and analyzing CypA expression in patients with coronary atherosclerotic heart disease and in healthy controls, we found that CypA was upregulated in patients with Coronary Atmospheric Heart Disease, and its expression was positively correlated with Gensini scores. In addition, CypA deficiency decreased cytokine expression, oxidative stress, and cardiomyocyte apoptosis in I/R-treated mice, eventually alleviating cardiac dysfunction. CypA knockdown also reduced H2O2-induced apoptosis in H9c2 cells. Mechanistically, we found that CypA inhibited K48-linked ubiquitination mediated by atrophin-interacting protein 4 (AIP4) and proteasomal degradation of TXNIP, a thioredoxin-binding protein that mediates oxidative stress and induces apoptosis. CONCLUSION: These findings highlight the critical role CypA plays in myocardial injury caused by oxidative stress-induced apoptosis, indicating that CypA can be a viable biomarker and a therapeutic target candidate for MI/RI.

...